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The dynamics of buoyant water entering a rotating basin are studied using a series of
laboratory experiments designed to elucidate the alongshore transport mechanisms in
river plumes. Inflowing water, which is discharged perpendicular to the tank wall, is
observed to form a growing anticyclonic bulge and a coastal current downstream of
the bulge. Detailed simultaneous measurements of the velocity and buoyancy fields
in the plume confirm that the bulge momentum is in a gradient–wind balance and
the coastal current is geostrophic. The growth of the bulge and accumulation of fluid
within it coincides with a reduction in coastal current transport to approximately
50 % of the inflow discharge. The bulge is characterized by a depth scale, h, which is
proportional to the geostrophic depth, hg , and two time-dependent horizontal length
scales, yc, the displacement of the bulge centre from the wall, and rb, the effective
radius of the bulge. These two length scales are proportional to the inertial radius,
Li , and the local Rossby radius, Lb, respectively. When rb � yc, the bulge is held
tightly to the wall, and a relatively large fraction of the inflow discharge is forced
into the coastal current. For plumes with yc approaching rb, the bulge is further from
the wall, and the coastal current flux is reduced. Once yc/rb > 0.7, the bulge separates
from the wall causing flow into the coastal current to cease and the bulge to become
unstable. In this state, the bulge periodically detaches from and re-attaches to the
wall, resulting in pulsing transport in the coastal current. Scaling of the bulge growth
based on hg , Li and Lb predicts that it will increase as Ro1/4, where Ro is the inflow
Rossby number. The bulge growth, inferred from direct measurements of the coastal
current transport, is proportional to Ro0.32 and agrees with the predicted dependence
within the experimental error.

1. Introduction
River inflows and their associated buoyant plumes are a major source of nutrients,

sediments and contaminants to coastal waters, where they support diverse and
productive ecosystems. Recently, considerable effort has been made to understand the
circulation within river plumes in order to determine the transport and dispersal of
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river-borne matter in the coastal zone. The dynamical behaviour of the simplest model
inflow, a buoyant discharge into a quiescent rotating basin, is not yet fully understood,
however. In particular, the rate at which river water is transported away from the
mouth is not known. In the present work, a simple model inflow is generated in the
laboratory and the dynamics and transport mechanisms of the plume are described.

A number of laboratory studies relevant to river inflows have examined the
dynamics of buoyant rotating gravity currents, such as those that form downstream (in
the sense of Kelvin wave propagation) of buoyant discharges (e.g. Stern, Whitehead &
Hua 1982; Griffiths & Hopfinger 1983; Whitehead & Chapman 1986; Lentz &
Helfrich 2002; Avicola & Huq 2002). In these studies, a coastally trapped gravity
current is generated by discharging buoyant water parallel to the coastal wall, using
either a constant source or a ‘dam break’. It is clear from recent laboratory studies,
however, that inflows initiated perpendicular to the coastal wall are fundamentally
different from those initiated parallel to it (Horner et al. 2000; Horner-Devine 2003;
Avicola & Huq 2003b) and that the parallel discharge case may not accurately
represent the circulation in river plumes, especially near the mouth of the river. This
finding is consistent with many numerical modelling studies of river plumes (e.g.
Chao & Boicourt 1986; Oey & Mellor 1993; Kourafalou et al. 1996; Fong & Geyer
2002), laboratory studies (e.g. Whitehead & Miller 1979; Bormans & Garrett 1989;
Avicola & Huq 2003) and analytical studies (Nof & Pichevin 2001), which consider
perpendicular inflows. In these studies, buoyant inflowing water is found to form an
anticyclonic vortex, or bulge, immediately downstream of the inflow and a coastal
current further downstream. While the coastal current width is of the order of the
Rossby deformation radius, the bulge is unsteady and grows to many times the Rossby
radius. Evidence of a bulge is observed in satellite images and field studies of the
Niagara (Masse & Murthy 1992) and the Columbia (Hickey et al. 1998) river plumes.
According to Fong & Geyer (2002), the bulge unsteadiness reduces the flux of river
water into the coastal current to 25–75 % of the inflow discharge. Such a reduction in
the alongshore flux modifies the plume circulation in the near and far field, since the
width (Lentz & Helfrich 2002; Avicola & Huq 2003a) and alongshore penetration
distance (Garvine 1999) of the coastal current depend on the flux of buoyant water
at the head of the current.

1.1. Background

Large-scale buoyant coastal plumes are typically assumed to be in cross-shore geostro-
phic balance and to have widths that scale with the Rossby radius Lr = (g′h)1/2f −1,
where h is the buoyant-layer thickness, f is the Coriolis frequency and g′ = (ρo−ρi)ρ

−1
o

is the reduced gravity based on the ambient and inflow densities, ρo and ρi , respectively
(Garvine 1995). The bulge region, however, is characterized by relatively strong
anticyclonic vorticity, and therefore centrifugal acceleration is likely to be important
in addition to the geostrophic terms. In general, inclusion of the centrifugal term
introduces a second length scale, the inertial radius Li =Uf −1, where U = Q(HW )−1

is the mean volumetric inflow velocity based on the inflow discharge Q, thickness H

and width W . Flows in which the centrifugal and Coriolis accelerations balance the
pressure gradient are said to be in gradient–wind balance,

v2
θ

r
+ f vθ = g′ ∂h

∂r
. (1.1)

This balance is referred to as either a gradient–wind or a cyclostrophic balance in
the literature. We will use the term gradient–wind, since it is used in a number of
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standard texts (e.g. Gill 1982; Holton 1972) and since cyclostrophic is also commonly
used to refer to the two-way balance between centrifugal acceleration and pressure
gradient. In this formulation, vθ is the depth-averaged orbital velocity, r is the radial
coordinate relative to the centre of the bulge circulation and h is the plume thickness.
Yankovsky & Chapman (1997) hypothesize that the bulge is in gradient–wind balance.
They derive an independent length scale based on the gradient–wind balance and
show agreement with the widths of a number of naturally occurring plumes.

1.2. Previous experiments

A number of laboratory experiments have modelled the analogous problem of ocean
inflows such as the Tsugaru warm gyre in the Western Pacific Ocean and the Alboran
gyre in the Western Mediterranean basin (Whitehead & Miller 1979; Kawasaki &
Sugimoto 1984; Bormans & Garrett 1989; Gleizon, Chabert D’Hieres & Renouard
1996). These laboratory experiments all consisted of exchange flows between two
basins of different density on a rotating table. Field observations of the Tsugaru inflow
(Colon 1983) and the Alboran gyre (Lanoix 1974) indicate that both form buoyant
anticyclonic lenses similar to the bulge under certain conditions. The laboratory
experiments were primarily concerned with determining the conditions under which
the gyre did or did not form.

Whitehead & Miller (1979) and Bormans & Garrett (1989) both reported that a
growing anticyclonic gyre formed when the radius of curvature, Rw , of the inflow
channel corner was less than the radius of curvature of the inflowing buoyant fluid.
Experiments in which a sharp exit corner was used typically resulted in the formation
of a growing gyre. Whitehead & Miller (1979) found that the width of the gyre
increased as the square root of time, consistent with Fong & Geyer (2002), and scaled
with the Rossby radius, LD = (g′D)1/2f −1, where D is the total depth of the water.
As outlined in Bormans & Garrett (1989), however, the experiments of Whitehead &
Miller (1979) were limited to the exit Froude number, Fr = u(g′h)−1/2 � 1, where h

is the upper-layer depth. In this case, Bormans & Garrett (1989) argue that LDR−1
w

reduces to u(f Rw)−1 and the radius of curvature of the inflowing water is set instead
by the inertial radius. They propose that u(f Rw)−1 > 1 is a more general criterion for
gyre formation when Fr is not necessarily equal to 1. The results of their experiments
support this criterion.

Gleizon et al. (1996) used a two-basin approach similar to the previous experiments,
except that they discharged the buoyant fluid into the western basin and withdrew it
from the eastern basin at a constant rate in order to control the flow rate through the
channel. They showed that two gyres, which were identical except for their discharge,
looked qualitatively similar if one was shifted in time by τ (Q), a temporal shift that
is only a function of the inflow rate Q.

Klinger (1994) and Sadoux et al. (2000) both examined the role of capes in generat-
ing oceanic gyres from geostrophic coastal currents. In contrast to Whitehead & Miller
(1979) and Fong & Geyer (2002), these studies found that the width of the gyre
increased linearly in time. Klinger (1994) considered the dynamical significance of the
lower-layer return flow in currents generated with an exchange flow. He found that a
gyre generated with an exchange flow was accompanied by a corresponding gyre with
the opposite sense of rotation in the lower layer. In many of his experiments, this
cyclonic gyre paired with the upper-layer anticyclonic gyre and the two self-advected
away from the wall. In experiments with a simple constant source inflow such as those
described in the current study, no lower-layer cyclone formed and the upper-layer
anticyclonic gyre was held against the wall.
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Avicola & Huq (2003a) examined the characteristics of the bulge in laboratory ex-
periments with a constant buoyant source that discharged via a rectangular bay
into a quiescent flat-bottomed tank. They varied the angle that the bay made with
the coast and the outlet radius of curvature of the bay, as well as f and g′. The
bulge formed only for experiments with a high inflow angle. In these runs, they
observed that the coastal current was narrower and propagated along the coast more
slowly than in runs where no bulge formed. They showed that the reduction in the
alongshore propagation speed and width of the coastal current was consistent with
a growing bulge that accumulated 60–70 % of the freshwater discharge. They found
that the bulge width scaled with the local Rossby radius, Lb, and increased as t2/5,
and that the bulge depth scaled with a geostrophic depth scale, hb, and increased
as t1/5. However, they did not vary the inflow discharge Q significantly, making it
difficult to determine the role of the inertial radius. In a companion paper, Avicola &
Huq (2003b) considered the role of the inflow angle. In this case, they found that the
cross-shore scale of the bulge was set by the inertial radius.

All of these studies scaled the gyre width by either the Rossby radius or the inertial
radius. However, there is no consensus among the different studies. As indicated by
Bormans & Garrett (1989), this ambiguity is related to the fact that most experiments
were carried out with Fr � 1. Although this is a realistic parameter range for naturally
occurring buoyant inflows, the experiments presented here demonstrate that deviation
from a critical Fr over a relatively small range results in a significant change in the
plume behaviour.

Furthermore, the above studies leave an important question unanswered. What
determines how far the bulge is displaced from the coast? Nof (1988) presented a con-
ceptual model of eddy–wall interaction that was later applied to the bulge by Fong &
Geyer (2002). The eddy, or bulge, is modelled as a circle with one side clipped by
the coast, and the discharge from the eddy depends on the fraction that intersects
the coast. If only one scale is used to describe the bulge, as in the laboratory studies
outlined above, the distance from the bulge centre to the coast is equal to the bulge
radius, the bulge does not intersect the coast and no fluid is discharged into the
coastal current. In all of the previously cited laboratory studies, however, the distance
from the wall to the bulge centre is less than its radius and some buoyant fluid is
discharged into the coastal current. A second length scale is required, therefore, to
define the bulge geometry that fully characterizes the dynamics of the bulge and its
relationship to the alongshore transport in the coastal current.

We present the results from a series of laboratory experiments designed to identify
the scales relevant to bulge growth and to relate them to the reduction in alongshore
transport in the plume. When the full experimental parameter range is spanned, we
find that both the inertial radius and the Rossby radius emerge as important scales
in the evolution of the bulge. In particular, both the bulge growth and alongshore
transport depend on the ratio of these two scales, L∗.

1.3. Present experiments

For each experiment, buoyant water was introduced at a constant volumetric flow
rate Q into a quiescent rotating tank using a simple rectangular source of width W

and height H . The velocity and density fields in the resulting plume were measured
with high spatial and temporal resolution in order to determine the scales of the flow
as well as the flux of buoyant water in the coastal current. The simple rectangular
source allows direct specification of the inflow Froude number and is a reasonable
model of many river inflows for which there is no significant return flow in the lower
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layer. It may not, however, be an accurate model of ocean inflows such as the Alboran
gyre, in which a significant return flow exists in the lower layer, nor wide-mouthed
estuaries where the inflow may be non-uniform (e.g. Garvine 2001).

1.3.1. Scales

The dynamics of the bulge and the corresponding transport in the coastal current
were measured for a range of independent inflow parameters. In order to separate
the buoyant and rotational dynamics, plumes are characterized by the inflow Rossby,
Ro =U (f W )−1, and Froude, Fr = U (g′H )−1/2, numbers. Here, f = 4πT −1, T is the
table rotation period and U = Q(WH )−1. The same inflow parameters form four
independent length scales that are relevant to this study: the inflow Rossby deforma-
tion radius, the inertial radius, the geostrophic bulge depth and the bulge Rossby
radius. These are given by,

Lr =
(g′H )1/2

f
, Li =

U

f
, hg =

(
2Qf

g′

)1/2

, Lb =

(
2Qg′

f 3

)1/4

, (1.2a–d)

respectively. The third scale, hg , is the maximum depth in a geostrophic current with
an alongshore flux equal to Q (Fong 1998; Lentz & Helfrich 2002) and the fourth scale,
Lb, is the Rossby deformation radius based on the bulge depth scale hg . Avicola &
Huq (2003a) found that hg and Lb described the bulge depth and width, respectively.

The gradient–wind momentum balance expressed by (1.1) involves a combination
of both inertial and baroclinic dynamics. Thus, the inertial radius and Rossby radius
are expected to emerge in the description of the plume dynamics. In (1.2b), the inertial
radius is defined in terms of the inflow velocity, U , since, in a river-forced system,
the inertia will be set by the inflow momentum. Once the bulge becomes very large,
however, the relative influence of the inflow momentum will decrease and the bulge
momentum will approach a geostrophic balance.

The two proposed scales Li and Lb can be combined to form a new dimensionless
parameter,

L∗ =
Li

Lb

,

which describes the relative importance of the inflow momentum to the dynamics of
the bulge. L∗ is a function of independent inflow parameters and is related to the
inflow Rossby and Froude numbers according to L∗ =2−1/4Fr1/2Ro1/4. Since the scale
of the bulge sets its volumetric capacity, L∗ is also expected to determine the frac-
tions of inflow discharge that are retained in the bulge and discharged into the
coastal current. The dependences of the bulge evolution on Li and Lb are determined
separately in the present experiments in order to elucidate the dynamic significance
of L∗. The alongshore transport is then measured over a range of Ro and Fr to
investigate the dependence of the coastal current flux on L∗.

1.4. Experimental set-up

The experiments were conducted in an annular water tank set on a rotating table
in the Environmental Fluid Mechanics Laboratory at Stanford University. The inner
and outer tank walls are Plexiglas and have 92 cm and 22 cm radii, respectively, and
the total tank depth is 24 cm. A 120 cm wall across one side forms the coastal wall
(figure 1).

The source of the buoyant water is a 120 l constant head tank located above the
level of the rotating table. Source water passes onto the table by means of a water
slip ring. To create the inflow, the water is introduced into the tank through a diffuser
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Tank wall
(r = 92 cm)

Inner tank wall
(r = 22 cm)

Direction
of rotation
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Freshwater
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(W = 5 cm,
H = 1 cm)

Overflow
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H = 20.5 cm)

FV2

FV1
FV3

Figure 1. Schematic of the rotating table from above showing the camera field of view for the
three measurement sections. FV1 is the camera field of view for the horizontal section through
the bulge. For these experiments the camera is directly above the field of view looking down.
FV2 is the plane of the laser sheet in the vertical bulge section. The plane is perpendicular
to the figure, and it is viewed from the left-hand side by the camera. FV3 is the field of view
in the angled coastal current section. In these experiments, the sheet is 15◦ to the horizontal,
so that it intersects the surface on the right-hand side of the field of view and is submerged
on the left-hand side. The camera is also inclined so that the entire field of view is in focus.

chamber attached to a 1 cm deep by 5 cm wide slot in the coastal wall at the level of
the ambient water surface.

The velocity and buoyancy fields are measured simultaneously in a section of the
flow using a combined digital particle image velocimetry (DPIV) and planar laser
induced fluorescence (PLIF) technique developed by Cowen, Chang & Lı̀ao (2001).
The technique involves acquiring a sequence of image triples with a digital camera that
is fitted with a wavelength cut-off filter. The first two images in each triple are illumi-
nated using a YAG laser, which has a wavelength higher than the cut-off wavelength
so that light reflected off seed particles in the flow passes the filter. These image pairs
are processed using a DPIV code developed by Cowen (e.g. Cowen et al. 2001) to
obtain highly resolved velocity fields. The third image in the triple is illuminated using
an argon ion laser sheet and processed using the PLIF technique (e.g. Crimaldi &
Koseff 2001). The source is differentially dyed with fluorescein relative to the ambient
water. The buoyancy field is calculated based on the fluorescent light emission from
the dye. The combined DPIV/PLIF technique requires that laser sheets from both
the YAG and argon ion lasers be formed in the rotating frame of reference. This is
accomplished by combining the laser beams below the rotating table and directing
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them vertically through an axial hole in the table. The beams are then steered hori-
zontally through a cylindrical lens using a mirror on the rotating table.

We modified the DPIV/PLIF technique to measure the alongshore transport of
buoyant fluid in the coastal current. Computing this flux requires measurement of
density and alongshore velocities in a vertical slice perpendicular to the coastal wall.
Measurements of alongshore displacement, however, are not possible in a laser sheet
oriented perpendicular to the primary direction of fluid motion with only one camera.
In order to circumvent this problem, we angled the laser sheet (θs =15◦) relative to
the horizontal. Since the sheet has a finite thickness (�1.5 mm), particles that are
displaced horizontally stay in the sheet and have a measurable displacement in the
angled plane of the sheet. The resolved displacements are corrected to account for
the sheet angle and projected onto a vertical plane. This technique was used to
measure a prescribed flux to within 5 % in a set of validation experiments (Horner-
Devine 2003). The experimental conditions were carefully controlled to avoid or
compensate for the effects of variations in index of refraction, differences in surface
tension, photobleaching and pH sensitivity of the fluorescein dye, differential heating
of the ambient tank fluid and wind resulting from the table rotation. The details of
the experimental procedures are explained in greater detail in Horner-Devine (2003).

We conducted four separate sets of experiments. In the first set, velocity and
buoyancy were measured in a near-surface horizontal section of the entire plume. In
order to obtain a description of the entire plume evolution, two runs were conducted
with the same inflow parameters. The upstream area including the bulge was imaged
in the first experiment and the adjacent downstream area was imaged in the second.
The processed velocity and buoyancy fields from these two experiments are spliced
together using a 3 cm overlapping region at x = 30 cm. The field of view was 57 cm
and 31 cm in the along- and across-shore directions, respectively. The two full-field
runs are labelled FF1 and FF2 and are summarized in table 1 in the Appendix. In the
second set of experiments, velocity and buoyancy in the bulge region of the plume were
measured in a horizontal 31 × 31 cm2 section, 0.5 cm below the surface. The camera
fields of view for this set of experiments and the last two sets of experiments are
shown in figure 1. The horizontal bulge runs are denoted HB and are summarized in
table 1 in the Appendix. In the third set, the vertical extent of the bulge was measured
by imaging the buoyancy field in a vertical plane perpendicular to the coastal wall.
The alongshore location of the plane was chosen so that it intersected the centre of
the bulge circulation. The vertical bulge runs are denoted VB and summarized in
table 2 in the Appendix. In the final set of experiments, the alongshore transport
of buoyant water in the coastal current was measured using the angled laser-sheet
technique. This measurement was made in a 13 × 13 cm2 area along the wall, 54 cm
downstream of the source. These runs are labelled CC and are summarized in table 3.

2. Results
2.1. General plume description

In all of the runs described in this study, the inflowing buoyant water was observed
to form a bulge near the source and a coastal current downstream of the bulge along
the wall. The structure and evolution are shown in figure 2(a–c) for a typical plume.
As described in the previous section, these figures were generated from two separate
runs (FF1 and FF2), and the measured velocity and buoyancy fields were spliced
together in the centre of the figure. The fields from the two runs blend seamlessly,
implying that there was a high degree of repeatability from one run to the next.
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Figure 2. Temporal evolution of the plume. (a), (b) and (c), velocity fields after 1, 2 and 3
rotations periods, respectively. The outer contour marks 20% of the inflow buoyancy. (d)
�, bulge and �, coastal current widths normalized by the inflow Rossby radius, (g′H )1/2f −1,
plotted against normalized time. (e), (f ) and (g), plume vorticity normalized by the planetary
vorticity, f , after 1, 2 and 3 rotations periods, respectively. The solid and dotted lines are the
0.4 and −0.4 contours, respectively.

Once the source was turned on, buoyant water immediately separated from the wall
and formed a broad jet-like current. The current was deflected to the right after half
of a rotation period and impinged on the wall 5Lr downstream of the source. After
one period, the central vortex structure was established, and the coastal current began
to form along the wall (figure 2a). After two and three rotation periods, the bulge
widened further, but the coastal current width remained constant (figure 2b, c, d).
The widths of the coastal current and bulge were measured based on the location
of the maximum gradient in the buoyancy field and normalized by Lr . After the
first three rotation periods, the coastal current width was slightly greater than Lr ,
and remained constant thereafter. The bulge continued to increase in size throughout
the experiment, however, reaching approximately 6Lr after seven rotation periods
(figure 2d).

The anticyclonic circulation is also evident in the vorticity field generated from the
measured velocity field (figure 2e, f, g). The centre of the bulge is dominated by a
circular region of negative vorticity and bounded by a band of positive vorticity at its
edge. As the bulge grows, the central anticyclonic region expands; however, the band
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Figure 3. Vertical bulge section. Density anomaly in the vertical bulge section for Run VB6,
normalized by the maximum density anomaly, �ρ∗. The black circles mark the interface depth
at each cross-shore point computed using the gradient method. The solid white line is a
quadratic fit to the cross-shore depth profile.

of positive vorticity remains the same size. Equal amounts of positive and negative
vorticity are introduced into the plume from the inflow, and, while the vast majority
of the positive vorticity is carried downstream into the coastal current, most of the
negative vorticity accumulates in the centre of the bulge. Despite the uniformity of
the anticyclonic circulation in the core of the bulge, small frontal eddies are observed
along the outer edge of the bulge, similar to those observed in coastal current flow
by Griffiths & Hopfinger (1983). These are likely to enhance lateral exchange of
momentum between the bulge and the ambient fluid in this region.

2.2. Bulge depth

In addition to its horizontal growth, the bulge adjusts vertically according to the
density anomaly, rotation rate and inflow discharge. In the experiments described in
table 2 (see the Appendix), Q, f and g′ are varied in order to examine the vertical
and cross-shore variability of the bulge and to determine its depth.

The vertical buoyancy field in the bulge exhibits a predominantly two-layer structure
(figure 3). The plume depth, defined at each point as the depth of the maximum vertical
density gradient, varies quadratically in the cross-shore direction in the core of the
bulge. Near the edge of the bulge there is more variability in the bulge structure,
consistent with lateral mixing along the outer front of the plume. In this region, the
gradient method over-estimates the depth. In order to calculate the depth profile, we fit
a quadratic curve h = ah1y

2+ah2y+ah3 to the locus of points corresponding to the bulge
depth at each cross-shore location, y (figure 3). We use only points in the core of the
bulge for the fit so that the fit is not affected by errors in the depth estimation near the
bulge edge. The quadratic fit is successful in describing the bulge depth in every case.

The maximum bulge depth, hb, based on the quadratic fit is plotted in figure 4(a)
and normalized by the geostrophic scale, hg in figure 4(b). This scale explains the
variation in bulge depth for each of the independent variables, f, g′ and Q. The depth
increases slightly over the course of the experiments. Other studies have reported
exponential deepening of the bulge where h ∼ tn. For the present data, the exponent,
n, is found to be less than 0.16. This result agrees well with the findings of Avicola &
Huq (2003a); in their experiments, the normalized bulge depth increased from
approximately 2 to 3 at a rate of ∼t1/5. The slightly higher rate of deepening
in their experiments relative to the present experiments was probably due to the
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Figure 4. Bulge depth. (a) Maximum bulge depth based on a quadratic fit to the measured
interface location. (b) Maximum bulge depth normalized by the geostrophic depth scale,
hg = (2Qf /g′)1/2. The solid black line is the exponential fit hb/hg =1.6(t/T )0.16.

difference in measurement techniques. If we define the bulge depth in terms of a
reference buoyancy (20 % of the inflow buoyancy) instead of the maximum vertical
gradient, we observe greater deepening. This implies that the deepening may be due
to mixing and dilution and may not represent a greater volume of buoyant fluid.
In this analysis, the 20 % contour is chosen as the reference buoyancy since isolines
corresponding to lower buoyancy levels reflected more variability in the buoyancy
field and were therefore more difficult to fit.

2.3. Offshore migration of the bulge centre

The velocity structure in the bulge is examined by considering the cross-shore profile
of alongshore velocity in the bulge. The location of the profile is chosen so that
it passes exactly through the bulge centre and thus represents the radial velocity
distribution as closely as possible. A representative profile is plotted in figure 5. The
velocity variation is strikingly linear in the core of the bulge. This is observed in the
vast majority of runs and corresponds to the region of constant anticyclonic vorticity
described in § 2.1. Outside of the core region, on the inshore and offshore sides of the
bulge, the velocity decreased rapidly to zero.

The offshore location of the bulge centre, yc, is defined as the zero-crossing in the
velocity profile. In practice, yc was calculated using a linear fit to the velocities in the
core of the bulge (dashed line in figure 5).

For all of the inflow parameters considered in this study, yc increases linearly in
time (figure 6). The variance in yc is minimized when it is normalized by the inertial
radius based on the mean inflow velocity, Li = U/f (r2 = 0.8, p < 0.01). Other scales
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for bulge radius have been proposed and, although they do collapse the data, none
explain as much of the variance (inflow Rossby radius. Lr , r2 = 0.57, p < 0.01; bulge
Rossby radius, Lb, r2 = 0.66, p < 0.01; cyclostrophic radius, Lcyc, r2 = 0.61, p < 0.01).
In particular, these alternative scales do not explain the bulge growth rate for runs
with different inflow discharge rates, Q.

Based on the scaled location of the bulge centre, its evolution can be modelled by
a simple linear expression,

yc

U/f
=

Cy

4π
tf + Cyo. (2.1)

Here, Cy = 0.26 ± 0.01 is the dimensionless growth rate of the bulge and Cyo =
0.90 ± 0.03 is the initial bulge size. In dimensional terms, yc is approximately equal to
the inertial radius initially and moves offshore at a rate that is a function only of U .

A similar treatment of the alongshore dimension of the bulge indicates that, after
an initial 2–3 rotation period adjustment, the alongshore migration of the bulge
centre ceases or slows markedly. The alongshore dimension scales with the local
Rossby radius, however, as opposed to the inertial scale. It appears, therefore, that
the bulge expands preferentially offshore and that the cross-shore scale is not wholly
representative of the bulge circulation.

The offshore location of the maximum and minimum velocities, Lmax and Lmin, are
the outer and inner edges of the bulge core (figure 5). Based on these dimensions, the
outer and inner radii are defined as ro = Lmax −yc and ri = yc −Lmin, respectively. Both
radii scale with the inertial radius and both increase linearly over the course of each
experiment; however, ro is consistently larger than ri (not shown). The slopes of the
normalized ro and ri data are within 5 % of each other, but the intercepts differ by
approximately 1. In dimensional terms, the outer radius is consistently greater than
the inner radius by one inertial radius. The bulge, therefore, is not exactly circular,
but is clipped on the coast side, consistent with the conceptual models described in
Nof (1988) and Fong & Geyer (2002).

2.4. Bulge area

A direct measurement of the bulge area, Ab, is obtained by calculating the area
included within the frontal buoyancy contour. As with the bulge depth, the plume
edge is defined by the 20 % buoyancy contour. For a number of runs, the bulge area
is greater than the field of view and so the calculated area underestimates the true
value. In order to account for this, the half-area for the left-hand half of the bulge is
calculated based on the alongshore location of the bulge centre from § 2.3. The total
area is therefore estimated as twice the measured half-area. In each experiment, the
area increases uniformly in time (figure 7a). In two cases, the growth rate appears to
vary with the rotation period owing to variations in the uniformity of the illumination
resulting from small errors in the laser alignment.

We define the effective bulge radius rb representative of the bulge area as

rb =

(
Ab

π

)1/2

, (2.2)

which is plotted in figure 7(b). As with yc, rb was normalized by a number of possible
scales and the results were compared. Whereas yc scales with Li , the variance in rb

is minimized when rb is normalized by Lb, the bulge Rossby radius defined in (1.2d)
(figure 7b). The total area of the bulge, therefore, depends on g′ and the buoyant
adjustment, as well as the rotation dynamics. Normalization of the bulge radius by
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Lb is consistent with the analytical model of Nof & Pichevin (2001) and laboratory
experiments performed by Avicola & Huq (2003a). The bulge grows as t0.25 during
the first 5 rotation periods and as t0.39 at later times.

As described in § 1.2, previous studies characterized the bulge by a single length
scale. However, there is no consensus among the studies as to whether the inertial
or Rossby radius is the relevant scale. The present results demonstrate that both are
important; the inertial scale sets the offshore location of the bulge, yc, and the Rossby
radius sets the effective radius of the bulge, rb. The bulge adjusts geostrophically such
that its size is proportional to Lb. However, the inflow momentum determines its
offshore expansion such that yc is proportional to Li .

2.5. Plume momentum balance

Next, the momentum balance in the bulge and coastal current are estimated. The
proposed bulge momentum balance, given by (1.1), is evaluated using the averaged
cross-shore profiles of alongshore velocity described in § 2.3 and cross-shore depth
profiles computed in § 2.2. The two terms on the left-hand side of (1.1), the centrifugal
and Coriolis accelerations, are calculated from the velocity profiles. The pressure term
on the right-hand side is calculated using the slope of the lower interface from the
quadratic fit to the depth profile. In order to evaluate the momentum balance, the
cross-shore variations in u and h in the slice through the bulge centre are assumed
to be equivalent to radial variations. Based on (2.1), the momentum contribution
due to the offshore migration of the bulge for the experiments considered here is
O(0.02 m s−2), at least an order of magnitude smaller than the dominant terms in the
momentum balance.

The three dominant terms in the momentum balance are plotted with respect to the
distance from the wall in figures 8(a), 8(b) and 8(c) for runs with Fr = 0.57, 0.81 and
1.00, respectively. No consistent trend is observed in the magnitude of the
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f vθ and g′(∂h/∂r), are plotted in (a)–(c) for three different cases after approximately 6 rotation
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momentum terms with Fr. However, the ratio of the centrifugal to the Coriolis term
remains relatively unchanged over the parameter space investigated. The normalized
momentum residual, defined as (v2

θ /r + f vθ − g′(∂h/∂r))/ max(f vθ ), is less than 10 %
in the core of the bulge, indicating that the dynamics in this region are described well
by the gradient–wind balance in all three cases considered (figure 8d). The balance
breaks down toward the edges of the bulge, where momentum is probably lost because
of frictional effects. These include lateral exchange of momentum due to small frontal
eddies and viscous diffusion in the thin outer region of the bulge.

Although the offshore migration of the bulge is a very small contribution to the
momentum balance within the bulge, it is likely to be important to the integrated
momentum of the entire plume circulation. Nof & Pichevin (2001) hypothesize that
the integrated momentum due to the offshore migration of the bulge is necessary to
balance the flux of momentum into the coastal current.

The alongshore momentum in the coastal current is expected to be in geostrophic
balance (e.g. Garvine 1995). This is evaluated using the angled-slice technique, which
allows direct measurement of the velocity and density fields (figure 9a, b).

The geostrophic velocity is computed from the measured density field using

ug = − g

f

∂

∂y

∫ 0

−z

�ρ

ρo

dz. (2.3)
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Figure 9. Coastal current structure. (a) The measured density anomaly, �ρ/ρo in a y − z slice
through the coastal current. Since the data were acquired using the angled-slice technique,
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shore velocity in the coastal current. The spatial resolution is approximately 0.1 and 2 mm
for the density and velocity measurements, respectively. (c) Geostrophic velocity computed
using (2.3) and the measured density anomaly from (a). (d), (e) and (f ), comparison of
the cross-shore pressure gradient term with the Coriolis term in the geostrophic momentum
balance for vertical sections 1, 2 and 3 cm from the wall, respectively.

The structure of the measured alongshore velocity field closely matches the computed
geostrophic velocity (figure 9c). In the core of the current, the velocity magnitude is
typically within 10 % of ug . The departure from geostrophy is greatest at the offshore
edge of the coastal current owing to the lateral spreading of the surface layer,
and close to the surface and interface where viscous diffusion becomes important.
The cross-shore pressure gradient, −(1/ρo)(∂p/∂y), and the Coriolis term, f u, are
compared in figures 9(d), 9(e) and 9(f ) for vertical profiles located 1, 2 and 3 cm from
the wall, respectively. These profiles clearly demonstrate that the momentum balance
in the core of the coastal current is geostrophic.

2.6. Coastal current transport

The alongshore transport of buoyant water in the coastal current is calculated directly
from the measured velocity and buoyancy fields according to,

Qf w =

∫ ∫
�ρ

ρo

u(y, z) dz dy. (2.4)

Equation (2.4) is integrated over each image excluding the region above the water
surface and beyond the wall. The data is filtered using a low-pass Butterworth filter
with a width equal to the rotation frequency. The measurement location is 54 cm



218 A. R. Horner-Devine, D. A. Fong, S. G. Monismith and T. Maxworthy

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fr

Ro

Figure 10. Stability diagram for all CC runs. �, Stable and �, unstable runs are marked
with open and solid circles, respectively.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1.0

t/T

Qfw–—
Q

T = 15 s
20 s
25 s
30 s
35 s
40 s

Figure 11. Time series of filtered normalized alongshore transport for different
rotation rates.

downstream of the source and, therefore, the transport at that location is subject to
a time lag associated with the advective travel time of the coastal current.

There are three modes of coastal current transport: slowly increasing, oscillatory
and steady. In the slowly increasing mode, which is observed only in runs with low
inflow discharge, the transport increases for the entire duration of the experiment.
In these runs, the coastal current thickness is of the order of the Ekman-layer
thickness and frictional effects are probably important. Since this is not relevant
to naturally occurring plumes, these runs are not discussed further. The oscillatory
mode corresponds to instability upstream in the bulge that modifies the flow into the
coastal current. This is verified and discussed further in § 2.7. The plume displays this
unstable behaviour for all runs with Fri > 0.9 (figure 10).

In the steady mode, the transport increases during the first 3−4 rotation periods and
is constant thereafter (figure 11). The peak velocity in the coastal current is observed
only 0.5 rotation periods after the current arrives at the measurement location. After
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that time, the current velocity decays, as was observed in Lentz & Helfrich (2002). The
current width and depth both increase during the ramp-up period and are relatively
constant for all subsequent time.

Once the coastal current has achieved steady state, it transports between 40 and
60 % of the source discharge in the parameter range considered. The average steady
transport for each run, calculated using data after 4 rotation periods, depends on the
rotation rate (figure 12). The normalized transport decreases from 0.56 to 0.41 between
Rossby numbers of 0.47 and 1.25. The curve shown in figure 12 is a least-squares fit
to the data given by Qf w/Q =1 − aRob, where a = 0.54 ± 0.04 and b = 0.32 ± 0.18.
The functional form of this fit is discussed in depth in § 3, where it is shown that the
observed decrease in transport with Ro is consistent with other laboratory studies,
numerical modelling studies and the observed bulge growth rates.

2.7. Bulge oscillation

Most runs with high inflow discharge or low density anomaly became unstable after
5–6 rotation periods. The velocity and density fields for one such run (Run HB19,
Ro =0.62, Fr = 1.00) are shown in figure 13. As the bulge becomes unstable, the
location where the outer bulge current impinges on the wall moves upstream, cutting
off flow into the coastal current and increasing flow into the bulge. At this time,
the bulge moves offshore more quickly and eventually pinches off. No runs showing
the bulge region were carried out for long enough to observe the bulge circulation
being reset after pinch-off. We expect that the increased retention of flow in the bulge
will eventually cause it to expand and reattach to the wall and coastal current. This is
verified using numerical model results (described below) and is evident in measure-
ments of coastal current transport.

A vertical bulge section for run VB11 after approximately 7 rotation periods is
shown in figure 13(d). This run is also unstable and the separation from the wall is
evident. While a small amount of buoyant fluid remains against the wall to drive an
alongshore flow, most of the bulge has migrated away.
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Figure 13. Bulge pinch-off. (a), (b) and (c) Velocity and density fields for run HB19 after 5, 6
and 7 rotation periods, respectively. (d) Vertical section through the bulge for run VB11. Runs
HB19 and VB11 do not have identical inflow parameters; however, both are good examples of
bulge pinch-off. Note that the clipped appearance of the density field on the left-hand side of
the bulge in (a)–(c) is due to attenuation of the laser and does not reflect the actual shape of the
bulge.

For comparison, a relatively high Fr ( = 1.0) run was also conducted using a
numerical model similar that used by Fong & Geyer (2002). The model output clearly
shows the same pinch-off phenomenon as the laboratory experiments (figure 14). In
the numerical model run, the bulge reattaches after pinch-off and then grows again
until pinch-off reoccurs and the pattern repeats itself. Similar oscillation and eddy
shedding was also observed for high Fr runs in a set of preliminary dye experiments
(not shown).

The observed oscillatory behaviour in the bulge affects the discharge of buoyant
water into the coastal current. As the bulge moves away from the wall, it separates
from the coastal current, increasing the return flow to the bulge and limiting the flow
into the coastal current. The coastal current transport increases initially and then
decreases as the bulge pinches off. This behaviour is observed in the coastal current
for a number of runs, typically with either high Q, low g′, or both (figure 15).

As mentioned previously, it was not possible to observe the longer-time behaviour
of the bulge in the laboratory experiments because it outgrew the camera field of view.
This limitation did not apply to measurements in the coastal current, however. Three
laboratory experiments were carried out for longer than 8 rotation periods. In these
runs, the coastal current transport repeats the pinch-off cycle 2 – 3 times at intervals
equal to approximately 9 rotation periods. The time between consecutive transport
maxima is equal within each of these runs, indicating that the same mechanism is
repeating itself. The period of oscillation in the coastal current is approximately
the same in the numerical model runs (figure 14) as well as the preliminary dye
experiments. The qualitative and quantitative agreement between the numerical and
laboratory experiments indicates that the same mechanism is observed in both.
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Figure 16. Location of the bulge centre normalized by the local Rossby radius at the
instability time.

We hypothesized above that, in the process of pinching off, the bulge fluid is
advected downstream in the coastal current. We would thus expect to see periodic
bursts in the coastal current exceeding Q. Instead, we observe that the transport
increases to a higher value each cycle; however, it does not exceed 0.6Q in the course
of any of the runs. This implies that only a fraction of the bulge sloughs off into the
coastal current during the pinch-off. While the pinch-off and re-attachment sequence
appears oscillatory in character, the magnitude of the oscillation increases throughout
the run in both the laboratory and numerical model experiments. Owing to this
amplification, the observed oscillation is eventually expected to result in breakdown
of the bulge circulation and is therefore considered to be a fundamental instability of
the system.

In order to examine the character of the instability in greater detail, we define the
pinch-off time, Tp , corresponding to the first maxima in the coastal current transport.
The offshore location of the bulge centre at the pinch-off time, yc(Tp), is calculated
from (2.1). In figure 16, yc(Tp), normalized by the bulge Rossby radius, is plotted for all
unstable coastal current runs. The bulge becomes unstable when yc(Tp) = bLb, where
b =1.0 is a constant, based on the mean value of the data presented in figure 16.
Normalizing this expression by Li shows that the bulge location at the point of
pinch-off depends inversely on the ratio of scales, L∗, i.e.

yc(Tp)

Li

=
1

L∗
. (2.5)

Furthermore, since the bulge radius rb scales with Lb, this result implies that the
bulge becomes unstable when its centre moves offshore a fixed distance relative to its
radius. By combining the above result with the results for rb, the bulge is found to
become unstable when

yc

rb

= 0.69 ± 0.07.

A circular bulge will detach when yc/rb is unity because the distance from the
bulge centre to the wall is greater than its radius. In that case, the recirculating
bulge current is tangent to the wall and the effective incidence angle is 180◦. It is not
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surprising, therefore, that the instability is initiated when yc/rb < 1. Whitehead (1985)
showed that the angle formed between an impinging jet and a wall in a rotating
system determines the flux of fluid in either direction along the wall. According to his
theory, the flux of fluid downstream (into the coastal current) is reduced as the angle
of the impinging current is increased. As the bulge moves offshore, and yc approaches
rb, the angle that the bulge current makes with the wall increases beyond 90◦. It is
likely, therefore, that the flow into the coastal current is significantly reduced prior to
the time of detachment and pinch-off is initiated. This is consistent with observations
of the bulge structure, such as those in figures 13 and 14(c)–14(e), which indicate that
the coastal current transport is reduced before the bulge detaches.

3. Discussion
In the present experiments, the plume is observed to evolve as follows. Inflowing

buoyant water separates immediately from the wall and forms a jet that circumscribes
the bulge. The jet impinges on the wall downstream of the bulge where it is divided
into a flow that forms the coastal current and one that rejoins the bulge circulation,
as was proposed by Whitehead & Miller (1979). The latter flow is incorporated into a
region of uniform anticyclonic vorticity in the centre of the bulge, which accumulates
buoyant water, in most cases at a constant rate, and expands.

The cross-shore momentum balance in the coastal current downstream of the bulge
is confirmed to be geostrophic. The circulation in the bulge deviates significantly
from the geostrophic balance that is often assumed in river plumes owing to the
importance of the centrifugal acceleration. The bulge momentum is found to be in
gradient–wind balance, as was hypothesized by Yankovsky & Chapman (1997), and
friction does not play a primary role in plume dynamics in the bulge (figure 8). This
is not surprising since the Ekman-layer depth is of the order of 1 mm, less than 10 %
of the typical bulge depth. Viscous diffusion and lateral mixing are likely to be more
important near the edge of the bulge, however, where the plume is thin.

In similar laboratory experiments, Avicola & Huq (2003a) found that the bulge
depth and radius scaled with a geostrophic depth scale, hg , and the Rossby deforma-
tion radius based on that depth, Lb, respectively. They found that the depth and radius
increased as t1/5 and t2/5, respectively. The results of the present experiments confirm
their proposed scaling. The depth and radius increase as t0.16 and t0.39, respectively.
The small difference between observed growth rates can be attributed to different
measurement techniques, as described in § 2.2, and is within the error of both sets
of measurements. This scaling suggests that the dominant dynamical balance in the
bulge circulation is geostrophic. However, it was shown in § 2.5 that the bulge is in
gradient–wind balance and that the nonlinear terms are of the same order as the
Coriolis and pressure gradient terms. In the present experiments, a second scale, yc, is
also found to be significant in the evolution of the bulge. yc is the offshore location of
the centre of the anticyclonic circulation in the bulge. It is observed to be proportional
to the inertial radius Li . Since Li depends on the inflow velocity, the importance of
this scale to the evolution of the bulge suggests that inflow momentum determines
the cross-shore expansion of the bulge.

There are two length scales, therefore, that determine the bulge dynamics, rb ∼ Lb

and yc ∼ Li . The ratio of yc to rb, describes the location of the bulge centre relative
to its mean radius. When yc/rb is relatively small, the bulge is held close to the wall
relative to its radius. When yc/rb is larger, but less than 0.7, the bulge circulation
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Figure 17. Qualitative change in bulge shape with increasing L∗. The velocity (arrows) and
density (contour line) fields are shown for 8 differents runs after 5 rotation periods. L∗ is
(a) 0.32, (b) 0.51, (c) 0.58, (d) 0.64, (e) 0.68, (f ) 0.81, (g) 1.0 and (h) 1.1, respectively. As L∗

increases, the bulge moves offshore, becomes more circular and the ratio of the bulge width to
the coastal current width increases. In (i), the ratio of the cross-shore width to the alongshore
width is plotted for each run. In (j ), the incidence angle of the bulge current is plotted for
each run. The scale ratio and angle for the highest L∗ is an approximation since the edges of
the bulge have passed out of the field of view.

is not held as closely to the wall. When yc/rb � 0.7, the bulge circulation is forced
offshore relative to its radius. In this case, the bulge fills more rapidly, becomes
unstable and pinches off.

Nof (1988) and Fong (1998) both developed related conceptual models. They des-
cribed the bulge as a circle that is clipped by the wall and suggested that the discharge
of buoyant fluid from the bulge is related to the clipped area. The model described
above extends their work by presenting separate scales that determine the size and
location of the bulge, thereby providing a means of estimating the clipped area.
Although we do not calculate the clipped area, we show in the following analysis that
the discharge into the coastal current is consistent with this geometric model.

The bulge structure is expected to vary with L∗ =Li/Lb based on the above
conceptual model. In figure 17, the velocity and density fields after 5 rotation periods
are shown for 8 runs spanning a range from L∗ equal to 0.32 to 1.1. The shape of the
bulge changes considerably over this range, with the bulge circulation moving offshore
as L∗ increases. This can be quantified based on the bulge asymmetry Lcross/Lalong,
which is the ratio of the cross-shore to the alongshore width of the bulge. Low L∗

runs have low values of this asymmetry parameter and are held close to the wall
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(figure 17i), whereas the asymmetry parameter exceeds unity for large L∗ runs, which
extend away from the wall. Because of this asymetry, the angle that the impinging
bulge current makes with the wall at the stagnation point increases as the centre of
the bulge moves away from the wall (figure 17j ). As shown by Whitehead (1985), this
decreases the discharge of buoyant fluid from the bulge into the coastal current. The
observed decrease in the ratio of the coastal current width to the bulge width with
increased L∗ is consistent with this prediction (figure 17a–h).

In the preceding analysis, the time dependence of rb and yc was ignored. Neverthe-
less, it plays an important role in the dynamics of the plume. In all of the experiments
reported in this study, rb was initially greater than yc, and thus the bulge was initially
stable. In cases where the plume became unstable, yc increased until it was greater
than 0.7rb. Since yc was initially smaller than rb and increased more rapidly, the bulge
should eventually become unstable in all cases. This could not be tested in the present
laboratory experiments because the size of the tank and field of view limited the
duration of the runs. Numerical model runs carried out for much greater times (e.g.
Nof & Pichevin 2001; Fong & Geyer 2002) and moderate Fr, however, do not result
in this instability. We hypothesize that, after a certain time to, the recirculating flow
in the bulge is much greater than the source discharge and, therefore, the momentum
contribution from the source becomes less significant. At this point, it is likely that
the bulge is not forced offshore as rapidly and may remain stable. Nof & Pichevin
(2001) make a similar distinction between the plume initiation time (t < to) and the
long-time evolution of the plume, for which their analytical theory applies. The results
presented here indicate that the plume initiation time, during which nonlinearity is
very important, is at least 8 days. This time period is critical to naturally occurring
river plumes, since the time scales of variation due to winds and other external forcing
is of the order of 2–10 days (Hickey et al. 1998).

The results of these experiments provide additional verification of the conclusions
of Avicola & Huq (2003a) and Whitehead & Miller (1979), who found that the
bulge size scales with the Rossby deformation radius. In the present study, however,
the inflow geometry is quite different from the geostrophic inflows used in the above
studies. The direct non-geostrophic inflow must adjust rotationally as it enters the
basin. This may contribute to the observed difference between cross- and along-
shore bulge scales, which are proportional to the inertial and Rossby radii, respec-
tively.

A primary objective of this work has been to quantify and explain the reduction in
alongshore transport in the laboratory plume owing to formation of the anticyclonic
bulge circulation. It is clear from the bulge experiments that the reduction is associated
with the continual growth of the bulge and accumulation of fluid within it. Further-
more, the size of the bulge relative to its offshore location results in a geometric
constraint that alters the discharge of buoyant fluid into the coastal current. When
L∗ is high, the bulge forms a more complete circle, is further from the wall,
and discharges less fluid into the coastal current. The reduction in transport with
increased L∗ is supported by direct measurements of coastal current transport. Since
L∗ = 2−1/4 Ro1/4Fr1/2 (see § 1.3.1), the preceding geometric description of the bulge
circulation suggests that coastal current transport will decrease for higher Fr and
Ro. This Ro dependence was observed in the transport experiments (figure 12) and
the numerical model data of Fong & Geyer (2002) (figure 18). The dependence on
Fr was also evident in the transport experiments; however, the observed variability
was more complex. Increased Fr decreased the transport considerably and resulted in
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Figure 18. Normalized rate of accumulation in the bulge plotted versus inflow Rossby number
including �, laboratory data from the present study and �, numerical data from Fong & Geyer
(2002). —, fit to numerical data; - - -, fit to laboratory data.

unsustainable offshore bulge growth and eventual pinch-off. For further confirmation,
the numerical model data of Fong & Geyer (2002) were re-plotted in terms of Fr,
using inflow parameters listed in their tables 1 and 2. The trend in their data also
supported the above conceptual model in which the transport is lower for higher Fr
(not shown).

The dynamical dependence of the coastal current transport on inflow parameters
can be elucidated by considering the conservation of volume in a rectangular control
volume that includes the entire bulge and the beginning of the coastal current. Fluid
enters the control volume from the river at rate Q and leaves in the coastal current
at rate Qcc. The difference Qb = Q − Qcc, is the rate of accumulation of fluid in the
bulge owing to its expansion. If the bulge is assumed to be circular,

Qb = 2π
d

dt

∫ R

0

hr dr, (3.1)

where R is the time-dependent radius of the bulge. As a first approximation and
mathematical convenience, let h(r, t) = h, where the dependence of h on r is assumed
to be negligible such that

Qb = π
d

dt
hR2 = Q − Qcc. (3.2)

For the purposes of scaling comparisons, (3.2) relates the bulge growth to the
reduction in alongshore transport. In § § 2.2 and 2.4, the bulge depth and radius were
found to vary as t0.16 and t0.39, respectively, after an initiation period. According to
(3.2), the observed time dependence suggests that the coastal current transport will be
constant, within the error of the experiments. During the initiation period, however,
the bulge growth rate is slower, and more fluid must be discharged into the coastal
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current. This may correspond to the ramp-up period observed in the coastal current
transport experiments.

In the case of geostrophic flow in the bulge, h ∼ (2Qf /g′)1/2 and R = rb ∼ (2g′Q/

f 3)1/4. Thus, the normalized bulge growth scales as

Qb

Q
=

π

Q

d

dt
hL2

b. (3.3)

In this case, Qb/Q is constant and does not depend on t , Ro or Fr.
If the bulge radius is assumed instead to scale with the inertial radius,

Qb

Q
=

π

Q

d

dt
hL2

i � FrRo1/2. (3.4)

In reality, however, it is clear that both the inertial and geostrophic scales are
important in describing the bulge growth. Using the simplest combination of these
two scales, if the bulge area scales according to R2 ∼ LiLb, then the bulge growth
scaling is given by

Qb

Q
=

π

Q

d

dt
h (LiLb) � Fr1/2 Ro1/4. (3.5)

It should be noted that, according to the conceptual model of a clipped circle
described above, the bulge area can be calculated exactly as a geometric function
of the radius and distance to the wall. In choosing to scale the bulge area as LiLb,
we have significantly simplified the actual dependence on the two scales; the exact
scaling may be more complex and hence the Rossby-number dependence different
from the 1/4 power law derived above. Nevertheless, the simple scaling illustrates
how the inclusion of both scales leads to a Rossby- and Froude-number dependence,
which is observed in the plume behaviour and the coastal current transport.

In the presents experiments, the coastal current was measured directly using the
angled-slice technique. For runs with a stable bulge, the freshwater transport was
observed to range from approximately 40 % to 60 % of the total freshwater discharge.
This range is consistent with the experiments of Gleizon et al. (1996), who estimated
that the transport in the majority of their runs ranged from 40 % to 70 %. The
agreement with the latter study, which consists of an exchange-type inflow and an
experimental apparatus that is seven times as large, implies that the present results
are insensitive to the type of inflow used or the scale of the experiment. Avicola &
Huq (2003a) estimate that the alongshore transport is approximately constant and
between 35 % and 40 % of the inflow.

As mentioned previously, measurement of the coastal current transport was limited
to runs in which the bulge was stable and only variation of the Rossby number
could be determined systematically. In these experiments, the non-dimensional coastal
current transport is lower for runs with lower table rotation rates. According to (3.2),
this implies that Qb must be higher for higher Ro runs. Qb/Q is calculated using (3.2)
and the transport data shown in figure 12 and plotted as a function of Ro in figure 18.
Regression of the laboratory data alone results in bulge growth that scales as

Qb

Q
� Ro0.32±0.18.
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The observed dependence on the Rossby number confirms that the purely geostrophic
scaling in (3.3) is not valid. The Rossby number exponent matches the exponent of
0.25 obtained using both inertial and geostrophic scales within the experimental error.
Although the confidence intervals are relatively large on this measurement owing to
the limited parameter range available, the observed exponent is statistically different
from 0 and 0.5 and supports the proposed scaling.

For comparison, values of Qb/Q derived from Fong & Geyer’s (2002) numerical
model data are also plotted in figure 18. In their study, they modelled the flow of
buoyant water from a simple discharge source into a flat-bottom rectangular basin
using ECOM3D, a derivative of the Princeton Ocean Model. The numerical model
and laboratory data agree to within the error of the experiments. The variation with
Rossby number, however, is not as great in the numerical model data, for which the
exponent is 0.17 ± 0.02.

4. Summary and conclusions
Laboratory experiments were carried out on a rotating table to simulate a coastal

river inflow. Buoyant fluid was introduced perpendicular to the straight tank wall
and the density and velocity fields of the evolving plume were measured. The goal
of the experiments was to examine the dynamics of the bulge region near the inflow
and the effect of the bulge on the alongshore transport in the plume.

The bulge circulation is observed to consist of a growing region of anticyclonic cir-
culation whose momentum is in gradient–wind balance. Fluid discharged from the
bulge forms a coastal current along the wall, which is shown to be in geostrophic
balance. Direct measurements of the alongshore transport of buoyant fluid in the
coastal current show that it is reduced to between 40 % and 60 % of the inflow
discharge. Further, the transport varies inversely with the inflow Rossby number.

In contrast to previous studies, which have sought to characterize the bulge by a
single horizontal length scale, two scales are found to determine the behaviour of the
bulge. The displacement of the bulge centre away from the wall is set by the inflow
momentum and scales with the inertial radius Li . The effective radius of the bulge
based on its total area scales with the bulge Rossby radius Lb. The ratio of these
two scales, L∗, determines the behaviour of the bulge. When L∗ is small, the bulge is
held close to the wall and a large fraction of the inflowing fluid is forced out of the
bulge and into the coastal current. As L∗ increases, the bulge moves further from the
wall and a smaller fraction of fluid is discharged into the coastal current. When L∗ is
large, the bulge becomes unstable, alternately separating from and reattaching to the
wall and causing the flow in the coastal current to be pulsed.

Using the above scales, the reduction in alongshore transport due to the bulge
growth is expected to depend on the inflow Rossby number according to Ro1/4.
This is consistent with the bulge growth rates inferred from costal current transport
measurements which vary as Ro0.32±0.18. Numerical modelling experiments spanning
a larger range for Ro have a smaller power dependence on the Rossby number
(although within the error bounds of the laboratory data fit), suggesting that it is
likely that the scaling for the bulge area is more complex than the simple product of
scales LiLb and perhaps deviates from the 1/4 power law associated with this scaling.
Nevertheless, the consistency between the simple theory and experimental data is
encouraging and emphasizes the importance of the two scales in setting the transport
of plume water.
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The present experiments focus on the initiation and evolution of the plume circula-
tion in the first 1–10 days. While natural river plumes are not initiated in the same
fashion as the laboratory experiments, they are routinely reset owing to changes in
ambient forcing such as wind, which occur on the same time scale as the experiments
(Hickey et al. 1998). In naturally occurring plumes, however, remaining buoyant fluid
may play an important role in the evolution of a rebuilding river plume after such an
event. The stratification and frontal structure resulting from the remaining fluid will
support internal waves and other dynamics not included in the present study. Future
work that takes these dynamics into account will increase both the complexity and
the realism of the conceptual model of plume evolution presented here.

We thank Jeffrey Koseff for support and helpful discussions and Todd Cowen for
graciously providing his PIV codes. We would also like to thank the anonymous
reviewers who helped streamline and improve the manuscript. This research was
supported by NSF grant OCE-0118029.

Appendix. Experimental parameters

Run T Q g′ W H Ro Fr
− s cm3 s−1 cm s−2 cm cm − −

FF1 20 10.6 6.9 5 1 0.67 0.81
FF2 20 10.6 6.9 5 1 0.67 0.81
HB1 20 10.6 6.9 5 1 0.67 0.81
HB2 20 10.6 6.9 5 1 0.67 0.81
HB3 23 10.6 6.9 5 1 0.78 0.81
HB4 25 10.6 6.9 5 1 0.84 0.81
HB5 28 10.6 6.9 5 1 0.94 0.81
HB6 15 10.6 6.9 5 1 0.51 0.81
HB7 30 10.6 6.9 5 1 1.00 0.81
HB8 35 10.6 6.9 5 1 1.20 0.81
HB9 40 10.6 6.9 5 1 1.30 0.81
HB10 25 14.8 6.9 5 1 1.20 1.10
HB11 25 10.6 6.9 5 1 0.84 0.81
HB12 20 10.6 6.9 5 1 0.67 0.81
HB13 20 7.1 6.9 5 1 0.45 0.54
HB14 20 7.1 6.9 5 1 0.45 0.54
HB15 35 7.1 6.9 5 1 0.79 0.54
HB16 25 10.6 14 5 1 0.84 0.57
HB17 25 10.6 14 2.5 1 3.40 1.10
HB18 25 9.8 3.5 5 1 0.78 1.00
HB19 20 9.8 3.5 5 1 0.62 1.00
HB20 35 9.8 3.5 5 1 1.10 1.00
HB21 10 10.6 6.9 5 1 0.34 0.81
HB22 20 16.7 6.9 5 1 1.06 1.26
HB23 25 16.7 6.9 5 1 1.32 1.26
HB24 25 2.9 3.5 5 1 0.23 0.31

Table 1. Experimental parameters for the horizontal sheet bulge runs.
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Run T Q g′ W H Ro Fr
− s cm3 s−1 cm s−2 cm cm − −

VB1 25 9.8 7 5 1 0.78 0.74
VB2 20 9.8 7 5 1 0.62 0.74
VB3 25 6.4 7 5 1 0.51 0.48
VB4 40 9.8 7 5 1 1.25 0.74
VB5 25 16.0 7 5 1 1.27 1.21
VB6 30 8.9 7 5 1 0.84 0.67
VB7 24 9.8 3.5 5 1 0.78 1.05
VB8 20 9.8 3.5 5 1 0.62 1.05
VB9 25 6.4 3.5 5 1 0.51 0.68
VB10 40 9.8 3.5 5 1 1.25 1.05
VB11 25 16.0 3.5 5 1 1.27 1.7
VB12 25 9.8 14 5 1 0.78 0.52

Table 2. Experimental parameters for bulge depth runs.

Run T Q θi g′ W H Ro Fr
− s cm3 s−1 deg. cm s−2 cm cm − −

CC1 20 9.8 90 7 5 1 0.62 0.74
CC2 35 9.8 90 7 5 1 1.1 0.74
CC3 15 9.8 90 7 5 1 0.47 0.74
CC4 30 9.8 90 7 5 1 0.94 0.74
CC5 25 9.8 90 7 5 1 0.78 0.74
CC6 40 9.8 90 7 5 1 1.20 0.74
CC7 25 6.4 90 7 5 1 0.51 0.48
CC8 25 13.2 90 7 5 1 1.10 1.00
CC9 25 8.1 90 7 5 1 0.64 0.61
CC10 25 11.5 90 7 5 1 0.92 0.87
CC11 25 9.8 90 7 5 1 0.78 0.74
CC12 25 2.9 90 7 5 1 0.23 0.22
CC13 25 16.2 90 7 5 1 1.30 1.20
CC14 15 6.4 90 7 5 1 0.31 0.48
CC15 25 9.8 90 7 2.5 1 3.10 1.50
CC16 35 6.4 90 7 2.5 1 2.9 0.97
CC17 15 11.5 90 7 5 1 0.55 0.87
CC18 25 9.8 90 3.5 5 1 0.78 1.00
CC19 25 6.4 90 3.5 5 1 0.51 0.68
CC20 25 13.2 90 3.5 5 1 1.10 1.40
CC21 30 2.9 90 3.5 5 1 0.28 0.31
CC22 15 9.8 90 3.5 5 1 0.47 1.00
CC23 35 9.8 90 3.5 5 1 1.10 1.00
CC24 15 13.2 90 3.5 5 1 0.63 1.40

Table 3. Experimental parameters for coastal current transport runs.
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